Securing Multi-Cloud Architectures with AI-Enabled Fraud Detection: Causal Trace Miner Analytics and ERP-Integrated Fraud Prevention Techniques
DOI:
https://doi.org/10.15662/IJEETR.2021.0306006Keywords:
Multi-cloud security, AI-enabled fraud detection, causal trace miner, ERP integration, fraud prevention, machine learning, multivariate threat classification, real-time monitoring, risk management, enterprise cloud securityAbstract
The proliferation of multi-cloud environments has increased the complexity of managing security and detecting fraud across enterprise systems. This study proposes an AI-enabled framework that integrates causal trace miner analytics with ERP systems to enhance fraud detection and prevention. By leveraging advanced machine learning models, multivariate threat classification, and real-time monitoring, the framework identifies fraudulent activities in financial transactions with high accuracy. The ERP integration allows seamless coordination between operational and security data, providing a holistic approach to risk management. Experimental results demonstrate significant improvements in fraud detection rates and reduced response times, highlighting the potential of AI and ERP-based approaches in securing multi-cloud infrastructures.
References
1. Popović, K., & Hocenski, Ž. (2010). Cloud computing security issues and challenges. In Proceedings of the 33rd International Convention MIPRO (pp. 344–349). IEEE.
2. Sugumar, R. (2016). An effective encryption algorithm for multi-keyword-based top-K retrieval on cloud data.
3. Sudhan, S. K. H. H., & Kumar, S. S. (2015). An innovative proposal for secure cloud authentication using encrypted biometric authentication scheme. Indian journal of science and technology, 8(35), 1-5.
4. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
5. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
6. Arora, Anuj. "Challenges of Integrating Artificial Intelligence in Legacy Systems and Potential Solutions for Seamless Integration." The Research Journal (TRJ), vol. 6, no. 6, Nov.–Dec. 2020, pp. 44–51. ISSN 2454-7301 (Print), 2454-4930 (Online).
7. Kapadia, V., Jensen, J., McBride, G., Sundaramoothy, J., Deshmukh, R., Sacheti, P., & Althati, C. (2015). U.S. Patent No. 8,965,820. Washington, DC: U.S. Patent and Trademark Office.
8. Navandar, Pavan. "Enhancing Cybersecurity in Airline Operations through ERP Integration: A Comprehensive Approach." Journal of Scientific and Engineering Research 5, no. 4 (2018): 457-462.
9. Mather, T., Kumaraswamy, S., & Latif, S. (2009). Cloud security and privacy: An enterprise perspective on risks and compliance. O’Reilly Media.
10. Hinton, G., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647
11. Jain, A. K., Ross, A., & Nandakumar, K. (2011). Introduction to biometrics. Springer.
12. Singh, H. (2020). Evaluating AI-enabled fraud detection systems for protecting businesses from financial losses and scams. The Research Journal (TRJ), 6(4).
13. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill.
14. Samarati, P., & de Capitani di Vimercati, S. (2001). Access control: Policies, models, and mechanisms. In R. Focardi & R. Gorrieri (Eds.), Foundations of security analysis and design (pp. 137–196). Springer. https://doi.org/10.1007/3-540-45608-2_3
15. Das, D., Vijayaboopathy, V., & Rao, S. B. S. (2018). Causal Trace Miner: Root-Cause Analysis via Temporal Contrastive Learning. American Journal of Cognitive Computing and AI Systems, 2, 134-167.
16. Konidena, B. K., Bairi, A. R., & Pichaimani, T. (2021). Reinforcement Learning-Driven Adaptive Test Case Generation in Agile Development. American Journal of Data Science and Artificial Intelligence Innovations, 1, 241-273.
17. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal ofComputer Science Applications and Information Technology, 5(1), 1-8.
18. Thangavelu, K., Sethuraman, S., & Hasenkhan, F. (2021). AI-Driven Network Security in Financial Markets: Ensuring 100% Uptime for Stock Exchange Transactions. American Journal of Autonomous Systems and Robotics Engineering, 1, 100-130.
19. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.
20. Anbazhagan, R. S. K. (2016). A Proficient Two Level Security Contrivances for Storing Data in Cloud.
21. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.
22. Sivaraju, P. S. (2021). 10x Faster Real-World Results from Flash Storage Implementation (Or) Accelerating IO Performance A Comprehensive Guide to Migrating From HDD to Flash Storage. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 4(5), 5575-5587.
23. National Institute of Standards and Technology. (2017). Digital identity guidelines (NIST SP 800-63-3). U.S. Department of Commerce.





