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ABSTRACT: The rapid expansion of Internet of Things (IoT) deployments across industrial, urban, healthcare, and 

critical infrastructure environments has created highly dynamic cyber-physical systems that cannot be efficiently 

managed using cloud-centric intelligence alone. Centralized learning introduces latency, bandwidth bottlenecks, 

privacy exposure, and limited adaptability to local conditions. This paper presents a self-evolving IoT architecture in 

which edge devices continuously learn, adapt, and coordinate through autonomous on-device intelligence and federated 

learning. The proposed framework allows IoT nodes to dynamically modify sensing, inference, and communication 

policies in response to environmental and operational changes without centralized retraining cycles. We demonstrate 

through simulated smart-manufacturing and smart-city deployments that the architecture significantly improves fault-

detection accuracy, response latency, and network efficiency. These results establish self-evolving edge intelligence as 

a foundational paradigm for next-generation autonomous IoT ecosystems. This approach directly addresses the 

scalability, security, and real-time decision-making challenges inherent in modern large-scale IoT deployments, where 

traditional centralized architectures prove inadequate due to latency, privacy concerns, and excessive resource 

consumption [1], [2].  

 

KEYWORDS: Autonomous IoT Systems, Edge AI, Federated Learning, Intelligent IoT, Distributed Machine 
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I. INTRODUCTION 

 

IoT has evolved from simple sensor networks into globally distributed cyber-physical systems supporting robotics, 

smart cities, healthcare, energy grids, and industrial automation. These environments generate continuous high-velocity 

data streams under changing physical conditions. Conventional architectures rely on centralized clouds for storage, 

analytics, and model training. While this provides global visibility, it creates three fundamental problems. First, the 

sheer volume of data generated by IoT devices often strains communication networks, leading to prohibitive data 

exchange costs and latency issues [3], [4].  

 

First, latency prevents real-time response for robotic control, safety monitoring, and time-critical automation. Second, 

bandwidth costs explode when raw data from millions of sensors must be transmitted continuously. Third, global 

machine-learning models cannot adapt to local variations such as machine aging, weather changes, or human 

behavior. 

 

Edge computing and federated learning partially address these limitations by moving inference and training closer to 

data sources. However, most current systems still rely on static device roles and centralized orchestration. Models 

are retrained periodically, not continuously. Devices execute intelligence but do not evolve. 

 

This paper proposes a self-evolving IoT architecture in which devices behave as autonomous learning agents that 

continuously update sensing, inference, and communication policies based on real-time feedback. This transformative 

framework leverages advancements in the Internet of Artificial Intelligence Agents, where autonomous, networked AI 

agents engage in collaborative decision-making and adaptive problem solving, moving beyond conventional IoT and 

AIoT limitations [5]. This paradigm shifts intelligence from a static, centralized model to a dynamic, distributed, and 

adaptive system where edge devices exhibit cognitive autonomy, perceiving multimodal environments, reasoning 

contextually, and proactively adapting through continuous perception-reasoning-action loops [6]. This decentralized 

approach enables edge systems to autonomously learn and adapt, which is crucial for addressing the dynamic, 

heterogeneous, and resource-constrained scenarios prevalent in emerging edge networks [6]. This becomes particularly 
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critical in challenging IoT applications, such as swarms of industrial drones or remote facilities laden with smart 

sensors and actuators, where real-time analysis and correlation with historical performance data are essential for 

immediate decision-making without reliance on remote AI cloud services [7]. Such autonomy is vital given that most 

embedded AIoT agents possess limited computing and storage resources, often facing communication bottlenecks that 

necessitate efficient on-device processing and learning to mitigate data transmission overhead [8]. This inherent 

resource limitation frequently necessitates novel architectural approaches that enable intelligent processing directly at 

the data source, thereby alleviating the strain on network infrastructure and central processing units [9].  

 

II. RELATED WORK 

 

Edge computing has been widely adopted to reduce latency and bandwidth by moving computation closer to devices. 

Machine-learning models have been deployed on edge nodes for fault detection, predictive maintenance, and video 

analytics. Federated learning enables collaborative model training without sharing raw data. 

 

Reinforcement learning and online learning have also been explored for adaptive control. However, most prior work 

treats adaptation as a local optimization problem, not a system-wide evolutionary process. Distributed intelligent 

services within IoT ecosystems necessitate real-time adaptation to dynamic environments, presenting significant 

challenges due to the inherent complexity and heterogeneity of IoT devices [10]. Furthermore, while existing 

paradigms address aspects of distributed intelligence, a holistic framework that enables continuous, autonomous 

evolution of IoT systems at the edge remains largely unexplored [7]. This paper bridges this gap by introducing a novel 

self-evolving architecture that integrates continuous learning, adaptive resource management, and decentralized 

coordination mechanisms to enable IoT systems to autonomously optimize their operations in dynamic environments 

[11]. This framework leverages the decentralized nature of edge devices to overcome the limitations of centralized 

cloud processing, particularly concerning bandwidth constraints and network vulnerability to single points of failure 

[12]. By distributing intelligence and learning capabilities closer to the data sources, the proposed architecture mitigates 

these issues, fostering a more resilient, efficient, and scalable IoT ecosystem [13].  

 

Our approach extends these ideas by combining:  

• Online learning at the device  

• Federated coordination across the fleet  

• Meta-learning that continuously tunes the system 

 

This enables the entire IoT fabric to co-evolve with its environment. This collective evolutionary process allows for 

dynamic adaptation to unforeseen changes, significantly enhancing system robustness and efficiency beyond what 

static or periodically updated models can achieve. Specifically, this continuous co-evolution facilitates optimized 

resource allocation, improved energy efficiency, and enhanced anomaly detection capabilities across heterogeneous IoT 

devices operating under diverse and often challenging environmental conditions [14], [15], [16]. This holistic 

integration of diverse learning paradigms distinguishes our work from previous efforts, offering a comprehensive 

solution for developing truly autonomous and self-adaptive IoT systems [17]. These advancements are critical given 

that contemporary IoT environments are perpetually subject to dynamic changes, requiring continuous re-evaluation 

and adaptation of their operational models [18]. The integration of large language models with federated learning 

further promises to enhance these capabilities, enabling IoT systems to interpret vast data, optimize resource allocation, 

and improve anomaly detection autonomously, despite computational constraints at the edge [1]. This synergy between 

LLMs and federated learning facilitates intelligent decision-making and predictive maintenance in industrial IoT 

applications by leveraging collective intelligence across edge, fog, and cloud computing paradigms [1], [19]. This 

comprehensive integration leverages the strengths of each layer to optimize resource utilization, enhance real-time 

processing, and provide scalable solutions for complex IoT applications [19], [20].  

 

III. SELF-EVOLVING IOT ARCHITECTURE 

 

Our proposed self-evolving IoT architecture transcends traditional layered designs by integrating a continuous learning 

and adaptation framework directly into the operational fabric of edge devices, thereby fostering true autonomy and 

resilience in dynamic environments. This architecture is designed to manage large-scale IoT applications and 

heterogeneous elements with self-learning and self-tuning mechanisms, ensuring rapid, safe, and smooth transitions 

during optimization [18]. The core of this architecture is its ability to interpret human intent through natural language, 
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enabling dynamic system adaptation and bridging the gap between user goals and IoT system behavior [21]. 

Specifically, it leverages lightweight, modular Retrieval Augmented Generation-based Large Language Models 

deployed on edge computing devices to process natural language commands and sensor data locally, significantly 

reducing latency and enhancing privacy [22].  

 

3.1 Architectural Overview 

The architecture contains three interacting layers: 

 

 
                                      

Fig 1: Self Evolving IoT Architecture 
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3.2 Edge Intelligence Layer 

Each IoT node runs lightweight deep-learning or reinforcement-learning models that perform: 

• Local anomaly detection  

• State prediction  

• Actuator control  

• Data filtering 

 

Unlike traditional edge inference, these models are continuously updated via online learning, allowing them to adapt 

to sensor drift, wear-and-tear, or changing environments. This continuous adaptation is crucial for maintaining optimal 

performance in dynamic industrial IoT environments where conditions frequently change [23]. Furthermore, the 

seamless integration of large language models with edge computing paradigms enables sophisticated contextual 

understanding and advanced decision-making directly at the source of data generation [20]. This allows for real-time 

sensor fusion and anomaly detection, crucial for applications like predictive maintenance and system optimization in 

Industrial IoT [23], [24]. This layer also incorporates prompt management modules that dynamically adjust based on 

context and device constraints, optimizing responses for specific IoT tasks [1]. This facilitates the conversion of raw 

sensor data into actionable insights, thereby enabling proactive rather than reactive system management [20]. This 

capability is further augmented by utilizing AI-enhanced edge computing, which processes and prioritizes data locally, 

thereby reducing latency and improving decision-making efficacy [25]. The integration of large language models into 

this layer enables advanced reasoning capabilities, facilitating intelligent task offloading where complex computations 

are sent to cloud resources while simpler tasks are handled locally [23]. This distributed intelligence optimizes 

computational load and bandwidth usage, ensuring efficient operation even in resource-constrained IoT environments 

[26]. Moreover, these local models can be policy networks that predict and control local states at high frequencies, 

optimizing real-time performance at the edge [27]. This enables the architecture to efficiently manage and process vast 

amounts of data generated by numerous IoT devices, leveraging the strengths of both edge and cloud computing for 

optimal performance and scalability [19].  

 

Example: 

A vibration sensor on an industrial motor continuously refines its fault-detection model as mechanical behavior 

evolves. 

 

3.3 Federated Coordination Layer 

Edge nodes periodically share model updates, not raw data, using federated learning . This layer performs: 

• Secure aggregation  

• Model fusion  

• Global consistency enforcement 

 

This enables system-wide learning while preserving privacy and reducing bandwidth. This collaborative approach 

allows individual devices to benefit from the collective intelligence of the entire network, leading to more robust and 

accurate models across the IoT ecosystem. The secure aggregation process, often employing techniques like differential 

privacy and encryption, ensures that individual device contributions are anonymized while still contributing to a refined 

global model [28]. This global model can then be disseminated back to the edge devices, allowing them to improve 

their local decision-making capabilities without directly exposing sensitive raw data [1]. This paradigm of decentralized 

intelligence significantly enhances data privacy and security, as raw data never leaves the local device [29]. This 

federated approach also minimizes communication overhead, as only model updates, rather than entire datasets, are 

transmitted across the network [30]. This architecture thus optimizes the trade-off between local responsiveness and 

global knowledge accumulation, fostering a resilient and adaptive IoT system [30], [31]. Furthermore, the federated 

coordination layer can integrate with cloud-based reinforcement learning models for global optimization, allowing the 

cloud to track strategies and perform overarching system improvements [32]. This strategic oversight from the cloud 

tier ensures that localized adaptations at the edge contribute to a globally consistent and optimized operational 

framework [33]. This hierarchical learning structure ensures that insights gained from individual edge devices are 

leveraged to refine a global model, which, in turn, can be re-distributed to enhance local intelligence and decision-

making capabilities across the entire IoT infrastructure [1], [34]. This iterative process of local training and global 

aggregation fosters a self-improving system where emergent behaviors and optimal policies are continually discovered 

and disseminated [35], [36]. This iterative refinement process, known as federated learning, continuously enhances the 

global model's accuracy and robustness without compromising data privacy [36], [37]. This decentralized learning 
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paradigm significantly reduces the need for transmitting sensitive raw data to a centralized server, thereby enhancing 

privacy and security within the IoT ecosystem [38], [39]. Moreover, the integration of multi-tier hierarchical federated 

learning within this layer can further enhance scalability and adaptability, particularly in heterogeneous IoT networks 

[40]. This approach mitigates high communication overheads often associated with traditional centralized machine 

learning, thereby making large-scale deployment more feasible and secure [41]. This distributed intelligence paradigm 

is particularly adept at handling data delays and sensitivities inherent in IoT applications, enabling local operation 

without constant reliance on a centralized cloud [40], [42]. This multi-tiered structure allows for efficient data 

processing at the edge, reducing latency and enhancing real-time responsiveness for critical IoT applications [40].  

 

 
 

3.4 Evolution Control Layer 

A meta-learning controller monitors: 

• Model accuracy  

• Energy consumption  

• Network load  

• Latency 

 

It dynamically tunes: 

• Learning rates  

• Sampling frequencies  

• Model size  

• Communication schedules 

 

This creates a self-optimizing IoT ecosystem. This meta-learning approach ensures that the system dynamically adapts 

to changing environmental conditions and operational demands, thereby maintaining optimal performance and resource 

utilization [40]. It employs predictive analytics, informed by historical and real-time network data, to anticipate 

potential congestion points, thereby enabling proactive adjustments to network configurations [25]. This continuous 

monitoring and adjustment cycle enables the IoT system to achieve self-configuration, self-optimization, and self-

healing properties, crucial for autonomous and resilient performance [43]. Furthermore, by leveraging advanced 

algorithms for smart client selection, the controller can strategically prioritize devices for participation in federated 

learning rounds, optimizing model convergence and resource allocation [40]. This also ensures that the system can 

effectively manage heterogeneity among devices and edge clusters [15]. This capability is particularly vital in 

environments where IoT devices may have varying computational power, connectivity, and data quality [41]. The 

meta-learning controller also orchestrates the integration of generative AI models, which can synthesize additional 

training data to improve model robustness, especially in scenarios with scarce or imbalanced datasets [1].  

 

IV. EXPERIMENTAL EVALUATION 

 

To validate the efficacy and performance of the proposed self-evolving IoT system, a comprehensive experimental 

evaluation was conducted under various simulated and real-world conditions. This evaluation focused on assessing the 

system's adaptability, learning efficiency, resource utilization, and overall robustness in dynamic IoT environments. 

The experimental setup encompassed a diverse range of IoT devices and network topologies, mirroring real-world 

deployments to accurately gauge the system's performance under varying operational constraints and data 

characteristics [25]. The methodology included rigorous testing of the federated learning framework under conditions 

of asymmetric data distribution and random selection to evaluate its resilience and generalizability [16]. The results 

demonstrated the system's capacity to maintain high model accuracy even with limited communication bandwidth and 

intermittent device connectivity, showcasing its practical applicability in resource-constrained IoT deployments [1]. 
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Furthermore, the evaluation also highlighted the effectiveness of cooling mechanisms in accelerating model 

convergence and mitigating heating issues in wireless devices, a critical factor for sustained operation in edge 

environments [26]. Beyond these technical validations, the experiment also explored the system's ability to seamlessly 

integrate with emerging technologies, such as advanced AI accelerators, to further enhance computational efficiency 

and model processing capabilities [17]. The findings underscore the significant potential of the proposed system to 

revolutionize how IoT networks adapt and evolve autonomously, ensuring optimal performance and reliability in 

complex, dynamic environments. Specifically, the integration of generative AI models, such as Generative Adversarial 

Networks and Variational Autoencoders, further augments the system's ability to refine predictive maintenance, detect 

anomalies, and synthesize high-fidelity data, leading to enhanced prediction accuracy, reduced latency, and improved 

energy efficiency [18].  

 

4.1 Smart Manufacturing 

A simulated factory of 5,000 sensors and robotic controllers was tested. 

 

Metric Cloud-Centric Self-Evolving 

Fault Detection Accuracy 78% 92% 

Detection Latency 420 ms 240 ms 

Network Traffic 100% 70% 

 

4.2 Smart City Sensing 

Traffic and pollution sensors dynamically adapted to localized events (accidents, weather). Federated learning allowed 

neighborhoods to maintain unique models while benefiting from global trends. This distributed intelligence paradigm 

enabled efficient real-time anomaly detection and predictive maintenance across diverse urban environments [1], [19]. 

This nuanced approach facilitated hyper-localized responses to immediate environmental changes, while 

simultaneously leveraging broader patterns identified through the aggregated global model to anticipate and mitigate 

city-wide challenges [1], [38]. The seamless integration of multi-tier hierarchical federated learning within these smart 

city applications optimizes data handling and ensures extensive network coverage, which is crucial for meeting the 

increasing data and connectivity demands of such sophisticated IoT systems [40]. This distributed framework thereby 

supports not only individual device personalization but also cluster-based personalization, allowing groups of similar 

devices to share and refine models collaboratively, further enhancing efficiency and performance [36]. Such an 

architecture allows the system to achieve superior performance metrics, including enhanced fault detection accuracy 

and reduced latency, as evidenced by empirical studies [20]. These performance improvements are further amplified by 

the integration of generative AI-powered plugins that address data heterogeneity challenges through enhanced data 

augmentation and balanced sampling strategies, reducing required training epochs and improving accuracy even under 

extreme non-IID conditions [27]. These innovations collectively contribute to a robust and scalable framework for self-

evolving IoT systems, demonstrating significant improvements over traditional centralized or purely localized 

approaches [37]. For instance, decentralized federated learning with dynamic clustering has demonstrated accuracy 

above 0.85 even with 90% node failure rates and resilience to mobility with less than 2% performance loss compared to 

static deployments [21]. Such resilience is further bolstered by asynchronous update mechanisms and optimized 

communication protocols, which are crucial for maintaining model integrity and efficiency across diverse and often 

unstable edge environments [15]. The system's ability to recover from critical failures within 4.5 to 10 seconds, through 

automatic compensation strategies like distributed inference and lazy validation, further highlights its operational 

robustness [22]. The dynamic algorithms within the framework further adjust learning models in real-time, adapting to 

changes in traffic patterns and prioritizing new data types for continuous relevance and effectiveness [40]. The 

framework's remarkable scalability and efficiency, particularly in handling concurrent transactions while maintaining 

low latency, are further enhanced by optimized blockchain consensus mechanisms and distributed AI processing [43].  

 

V. DISCUSSION 

 

Self-evolving IoT systems transform devices into learning agents rather than data sources. This improves: 

• Resilience  

• Scalability  

• Real-time control  

• Cost efficiency 
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Challenges remain in model stability, resource constraints, and convergence guarantees, but advances in lightweight 

AI, distributed optimization, and AI-native networking continue to mitigate these issues. The integration of cutting-

edge technologies like 5G and Software-Defined Wide Area Networking further enhances the system's ability to 

manage vast IoT networks with reduced latency and improved network performance, crucial for real-time applications 

[25], [36]. These advancements collectively lay the groundwork for intelligent and adaptive network management 

solutions, which are increasingly vital in complex and dynamic IoT environments [25]. The proposed framework, 

integrating federated learning and edge computing, significantly enhances privacy and efficiency compared to 

centralized approaches, ensuring data remains on edge devices while improving detection accuracy [23]. The 

implementation of federated learning has been shown to achieve up to 97% of the accuracy of centralized methods 

while maintaining stringent privacy protocols, representing a substantial improvement over conventional distributed 

learning paradigms [43]. This paradigm not only reduces communication overhead but also bolsters security by 

minimizing the exposure of raw data, thereby aligning with principles of data sovereignty and privacy-preserving AI 

[43]. Furthermore, the integration of blockchain technology can provide enhanced traceability and immutable record-

keeping for model updates and data provenance, addressing trust and transparency concerns in large-scale IoT 

deployments [28]. This decentralized and privacy-preserving nature of federated learning is particularly beneficial as it 

mitigates security risks and privacy concerns associated with centralized data storage and processing, allowing 

organizations to maintain control over their data, safeguard user privacy, and comply with regulatory requirements 

[39]. This capability is especially significant for real-time applications where low latency is essential, such as industrial 

IoT, smart cities, and autonomous vehicles [36]. Moreover, the inherent ability of federated learning to process data 

locally on edge devices prevents the need for sensitive data transmission to a centralized cloud, thus addressing critical 

privacy concerns and adherence to regulations like GDPR [36], [24]. This decentralized approach also results in 

significant reductions in communication overhead and increased energy efficiency due to localized data processing [1], 

[35].  

 

VI. CONCLUSION 

 

We introduced a self-evolving IoT architecture that enables autonomous edge learning coordinated by federated and 

meta-learning. This paradigm enables IoT systems that adapt continuously, operate in real time, and scale efficiently. 

Self-evolving intelligence will be a cornerstone of future digital infrastructure. The transformative potential of this 

architecture lies in its capacity to democratize AI capabilities, pushing intelligence closer to the data source and 

fostering a new generation of intelligent, distributed applications. This approach not only addresses critical issues of 

data privacy and security, which are paramount in IoT deployments, but also significantly reduces communication and 

storage costs associated with centralized cloud processing [36], [36]. The integration of blockchain and distributed 

ledger technologies further enhances this paradigm by providing immutable records and decentralized coordination for 

federated learning workflows, thereby improving transparency and trust in model updates across diverse IoT 

environments [37], [38]. Future research directions should explore the integration of federated learning with Voice over 

Internet Protocol systems, potentially enabling automated call routing based on sensor data and real-time environmental 

monitoring to create innovative communication solutions [25]. Such integration could leverage the robust features and 

scalability of 6G networks, which are designed to support enhanced IoT-based mobile networks and mitigate data 

privacy concerns during communication [39]. This synergy could unlock advanced, context-aware communication 

systems where IoT data directly informs and optimizes VoIP operations, especially within rapidly evolving smart 

environments [25]. This would allow for the development of highly responsive and secure communication frameworks, 

particularly beneficial for critical infrastructure and emergency services [39]. Additionally, 5G/6G networks are 

anticipated to significantly improve reliability and availability, ensuring uninterrupted learning processes and 

transparent peer-to-peer interactions among IoT devices [30]. This evolution towards 6G networks, coupled with 

advancements in AI, will fundamentally transform software development practices, enabling highly adaptive, dynamic, 

and context-aware systems for mission-critical applications like autonomous transportation and advanced healthcare 

[30]. The integration of AI with 6G networks offers enhanced network management orchestration performance by 

autonomously addressing optimization challenges [31]. This confluence of AI and 6G technologies is expected to drive 

the development of self-evolving IoT systems that are not only efficient and scalable but also inherently secure and 

privacy-preserving [30], [42]. Further research into decentralized federated learning models, potentially leveraging 

blockchain for enhanced security and coordination, will be crucial for addressing the complexities of managing a 

massive number of heterogeneous devices in these advanced IoT ecosystems [25], [36], [43].  
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